無料ブログはココログ

« 量子アニーリング | Main | 放送大学面接授業『国際統計データの性格と使い方』 »

June 01, 2017

量子アニーリング特許

先にお知らせした量子アニーリングのレクチャー、行けませんでした。
(/_;)ぐすん。

背中がばきばきでマッサージをしてもらってる最中でした。

でも関連するレポートが出てるみたいですね。

ついに出た!量子コンピュータD-Waveを使った非負二値行列因子分解

非負二値行列...なんじゃらほい、ですが、記事を読めばなんとなく(飽くまでもなんとなく)わかります。

私たちリクルートコミュニケーションズは以前より早稲田大学と量子アニーリングに関する共同研究を進めていましたが、昨年よりD-Wave Systemsと共同研究を開始し、D-Waveを用いた機械学習アルゴリズムの開発やその広告配信への応用に取り組んでいます。また、今年の6月には量子アニーリングに関する世界トップクラスの国際学会Adiabatic Quantum Computing Conference2017が日本で行われ、私たちもD-Waveを用いた機械学習アルゴリズムやレコメンデーション手法について発表する予定です。

いろんな企業が連携してるみたいですね。

ためしに量子アニーリングで特許検索してみると、33件、Googleも Yahoo!も出願しています。

なんとYahoo!に至っては日本で特許を取っていますな。

特許5899272号
【発明の名称】算出装置、算出方法及び算出プログラム
【出願日】平成26年6月19日(2014.6.19)
【出願人】ヤフー株式会社
【発明者】磯 健一
【要約】
【課題】多段ニューラルネットワーク(DNN)を容易に取得する。
【解決手段】算出装置100は、追加部131と、受付部132と、算出部133と、を有する。追加部は、入力データに対する演算結果を出力する複数のノードを接続したネットワークであって所定のクラスに含まれる第1のサブクラスに属するデータの特徴を学習済みのネットワークに対して新規ノードを追加する。受付部は、所定のクラスに含まれる第2のサブクラスに属する学習用のデータを入力データとして受け付ける。算出部は、受付部によって受け付けられた学習用のデータをネットワークに入力した場合の出力結果に基づいて、第2のサブクラスに属する学習用のデータの特徴を学習するように、追加部によって追加された新規ノードと他のノードとの間の結合係数を算出する。
【特許請求の範囲】
【請求項1】
入力データに対する演算結果を出力する複数のノードを接続したネットワークであって所定のクラスに含まれる第1のサブクラスに属するデータの特徴を学習済みのネットワークに対して新規ノードを追加する追加部と、
前記所定のクラスに含まれる第2のサブクラスに属する学習用のデータを入力データとして受け付ける受付部と、
前記受付部によって受け付けられた学習用のデータを前記ネットワークに入力した場合の出力結果に基づいて、前記第2のサブクラスに属する学習用のデータの特徴を学習するように、前記追加部によって追加された新規ノードと他のノードとの間の結合係数を算出する算出部と
を備えたことを特徴とする算出装置。
【請求項2】
前記算出部は、
前記結合係数として、前記学習用のデータを前記ネットワークに入力した場合の出力結果と前記学習用のデータに対応する正しい出力結果との間の誤差を最小とする結合係数を算出する
ことを特徴とする請求項1に記載の算出装置。
【請求項3】
前記算出部は、
前記追加部によって追加された新規ノードと他のノードとの間の結合係数として、前記他のノード間の結合係数を不変にして前記誤差を最小とする結合係数を算出する
ことを特徴とする請求項2に記載の算出装置。
(以下略)
Yahoo_pat


おもしろいので、拒絶理由通知の理由も一個載せておきましょう。

理由1(進歩性)について

・請求項   1-3、8-9
・引用文献等 1-2
・備考

 引用文献1には、第1の入力データ(劣化前の入力パラメータ)に基づいて、出力データと学習データとの誤差が最小となるように、ニューラルネットワークの結合荷重を学習し、第2の入力データ(劣化後の入力パラメータ)を学習する際に、ニューロンを追加し、既存のニューロンに対する結合荷重を固定したまま、追加したニューロンに対する結合荷重を学習することが記載されている(特に段落[0038]、[0042]-[0052]を参照されたい。)。
 引用文献2には、異なるカテゴリの図形の学習を開始する毎に、既存のニューロンに対する結合重みを固定したまま、新たにニューロンを追加し、当該ニューロンに対する結合重みをバックプロパゲーション則に従って調整することにより、異なるカテゴリの図形の認識を行うためのニューラルネットワークの学習を行うことが記載されている(特に[要約]、段落[0019]-[0036]を参照されたい。)。
 引用文献1及び引用文献2に記載された発明は、いずれも学習過程でニューロンを追加することにより学習内容を増やすことを目的とする技術である点で一致しているから、引用文献1に記載された発明において、ニューラルネットワークの学習対象を入力データのカテゴリとすることにより、上記各請求項に係る発明を想到することは、当業者にとって容易である。

1.特開2012-014617号公報
2.特開平09-062644号公報
3.特開平05-246633号公報 (周知技術を示す文献)
4.特表平07-502357号公報

「量子アニーリング」という用語は1つしか見いだせませんが、量子コンピュータのアルゴリズムを明かしたのは確かでしょう。

特許もぼちぼち出ているので、公報を読んで勉強できますね。

修論で公報を読み始めた時は、量子アニーリングなんて用語知らなかったなあ。人気blogランキング・自然科学にぷちっとな。【押す】≪コメントは応接室にお願いします。≫

« 量子アニーリング | Main | 放送大学面接授業『国際統計データの性格と使い方』 »

「自然科学・工学」カテゴリの記事

TrackBack

TrackBack URL for this entry:
http://app.cocolog-nifty.com/t/trackback/61116/65358176

Listed below are links to weblogs that reference 量子アニーリング特許:

« 量子アニーリング | Main | 放送大学面接授業『国際統計データの性格と使い方』 »

サイト内検索
ココログ最強検索 by 暴想

更新情報

June 2017
Sun Mon Tue Wed Thu Fri Sat
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30